A statistical recurrent stochastic volatility model for stock markets
Year of publication: |
2023
|
---|---|
Authors: | Trong-Nghia Nguyen ; Minh-Ngoc Tran ; Gunawan, David ; Kohn, Robert |
Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 41.2023, 2, p. 414-428
|
Subject: | Deep learning | Financial econometrics | Recurrent neural networks | Volatility modeling | Volatilität | Volatility | Neuronale Netze | Neural networks | Stochastischer Prozess | Stochastic process | Theorie | Theory | Aktienmarkt | Stock market | Finanzmarktökonometrie | Zeitreihenanalyse | Time series analysis |
-
Forex exchange rate forecasting using deep recurrent neural networks
Dautel, Alexander Jakob, (2020)
-
Bayesian nonparametrics for financial volatility modeling
Zaharieva, Martina Danielova, (2017)
-
The hybrid forecast of S&P 500 volatility ensembled from VIX, GARCH and LSTM models
Roszyk, Natalia, (2024)
- More ...
-
Recurrent conditional heteroskedasticity
Trong-Nghia Nguyen, (2022)
-
A dynamic leverage stochastic volatility model
Nguyen, Hoang, (2023)
-
A dynamic leverage stochastic volatility model
Nguyen, Hoang, (2021)
- More ...