A survey on AI-based scheduling models, optimization and prediction for hydropower generation : variants, challenges, and future directions
Year of publication: |
[2022]
|
---|---|
Authors: | Villeneuve, Yoan ; Séguin, Sara ; Chehri, Abdellah |
Publisher: |
Montréal (Québec), Canada : GERAD, HÉC Montréal |
Subject: | Hydropower | hydropower scheduling | machine learning | optimization | stochastic programming | linear regression | random forest | reinforcement learning | Deep Neural Networks | Wasserkraft | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Scheduling-Verfahren | Scheduling problem | Mathematische Optimierung | Mathematical programming | Stochastischer Prozess | Stochastic process | Lernprozess | Learning process | Algorithmus | Algorithm | Prognoseverfahren | Forecasting model |
-
Deep learning for solving dynamic economic models.
Maliar, Lilia, (2021)
-
Müller, David, (2022)
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
- More ...
-
Improving nurse scheduling using a random forest algorithm to predict employee well-being
Séguin, Sara, (2025)
-
Stochastic short-term hydropower planning with inflow scenario trees
Séguin, Sara, (2017)
-
Daadaa, Maissa, (2022)
- More ...