A systematic classification of database solutions for data mining to support tasks in supply chains
Year of publication: |
2020
|
---|---|
Authors: | Hunker, Joachim ; Scheidler, Anne Antonia ; Rabe, Markus |
Published in: |
Data science and innovation in supply chain management : how data transforms the value chain. - Berlin : epubli GmbH, ISBN 978-3-7531-2346-2. - 2020, p. 395-425
|
Subject: | Logistics | Industry 4.0 | Digitalization | Innovation | Supply Chain Management | Artificial Intelligence | Data Science | Lieferkette | Supply chain | Künstliche Intelligenz | Artificial intelligence | Data Mining | Data mining | Digitalisierung | Digitization | Logistik | Datenbank | Database | Big Data | Big data | Klassifikation | Classification |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Konferenzbeitrag ; Conference paper ; Aufsatz im Buch ; Book section |
Language: | English |
ISBN: | 978-3-7531-2346-2 |
Other identifiers: | 10.15480/882.3121 [DOI] hdl:11420/8011 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Product lifecycle optimization by application of process mining
Meßner, Marco, (2020)
-
Data science and innovation in supply chain management : how data transforms the value chain
Kersten, Wolfgang, (2020)
-
Evaluation of data quality in dimensioning capacity
Vliegen, Lea, (2020)
- More ...
-
A systematic classification of database solutions for data mining to support tasks in supply chains
Hunker, Joachim, (2020)
-
Büttner, Daniel, (2021)
-
Methode zur Erschließung von Wissen aus Datenmustern in Supply-Chain-Datenbanken
Scheidler, Anne Antonia, (2017)
- More ...