A Theory-Based Interpretable Deep Learning Architecture for Music Emotion
Year of publication: |
2022
|
---|---|
Authors: | Fong, Hortense ; Kumar, Vineet ; Sudhir, K. |
Publisher: |
[S.l.] : SSRN |
Subject: | Emotion | Musik | Music | Musikwirtschaft | Music industry | Theorie | Theory | Lernen | Learning |
Extent: | 1 Online-Ressource (54 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 26, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.4025386 [DOI] |
Classification: | M31 - Marketing |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Drawing Emerging Business Models for the Mobile Music Industry
Vlachos, Pavlos A., (2013)
-
Discovery of Music through Peers in an Online Community
Garg, Rajiv, (2018)
-
Fast Food Restaurant Lighting and Music Can Reduce Calorie Intake and Increase Satisfaction
Wansink, Brian, (2012)
- More ...
-
A theory-based explainable deep learning architecture for music emotion
Fong, Hortense, (2025)
-
Greedy or grateful? : asking for more when thanking donors
Sudhir, K., (2019)
-
Greedy or Grateful? Asking for More When Thanking Donors
Sudhir, K., (2021)
- More ...