A theory of regular Markov perfect equilibria in dynamic stochastic games : genericity, stability, and purification
Ulrich Doraszelski and Juan F. Escobar
This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit purification. To establish these results, we introduce a notion of regularity for dynamic stochastic games and exploit a simple connection between normal form and dynamic stochastic games.
Year of publication: |
September 2010
|
---|---|
Authors: | Doraszelski, Ulrich ; Escobar, Juan |
Published in: |
Theoretical economics : TE ; an open access journal in economic theory. - Toronto : [Verlag nicht ermittelbar], ISSN 1555-7561, ZDB-ID 2220447-7. - Vol. 5.2010, 3, p. 369-402
|
Subject: | Dynamic stochastic games | Markov perfect equilibrium | regularity | genericity | finiteness | strong stability | essentiality | purifiability | estimation | computation | repeated games | Stochastisches Spiel | Stochastic game | Markov-Kette | Markov chain | Dynamisches Spiel | Dynamic game | Stabilität eines Gleichgewichts | Stability of equilibrium | Gleichgewichtstheorie | Equilibrium theory | Wiederholte Spiele | Repeated games |
Saved in:
freely available