A tight compact quadratically constrained convex relaxation of the Optimal Power Flow problem
Year of publication: |
2024
|
---|---|
Authors: | Lambert, Amélie |
Published in: |
Computers & operations research : an international journal. - Amsterdam [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 1499736-8. - Vol. 166.2024, Art.-No. 106626, p. 1-12
|
Subject: | Semidefinite programming | Global optimization | Optimal Power Flow | Quadratic convex relaxation | Quadratically constrained quadratic programming | Mathematische Optimierung | Mathematical programming | Theorie | Theory | Nichtlineare Optimierung | Nonlinear programming |
-
Petra, Cosmin G., (2023)
-
On the extensions of Frank-Wolfe theorem
Luo, Zhi-Quan, (1997)
-
Maximizing perturbation radii for robust convex quadratically constrained quadratic programs
Yu, Pengfei, (2021)
- More ...
-
An efficient compact quadratic convex reformulation for general integer quadratic programs
Billionnet, Alain, (2013)
-
Using a Conic Bundle method to accelerate both phases of a quadratic convex reformulation
Billionnet, Alain, (2017)
-
New optimization models for optimal classification trees
Ales, Zacharie, (2024)
- More ...