A user-centered explainable artificial intelligence approach for financial fraud detection
| Year of publication: |
2023
|
|---|---|
| Authors: | Zhou, Ying ; Li, Haoran ; Xiao, Zhi ; Qiu, Jing |
| Published in: |
Finance research letters. - Amsterdam [u.a.] : Elsevier, ISSN 1544-6123, ZDB-ID 2181386-3. - Vol. 58.2023, 1, p. 1-10
|
| Subject: | Explainable artificial intelligence | Financial fraud detection | SHAP | Künstliche Intelligenz | Artificial intelligence | Betrug | Fraud | Wirtschaftskriminalität | Economic crime | Finanzsektor | Financial sector | Bilanzdelikt | Accounting fraud |
-
Cheah, Patience Chew Yee, (2023)
-
Financial Fraud Detection Using Machine Learning
Ma, Xiyuan, (2025)
-
Using interpretable machine learning for accounting fraud detection : a multi-user perspective
Lösse, Leonhard J., (2023)
- More ...
-
Using data-driven methods to detect financial statement fraud in the real scenario
Zhou, Ying, (2024)
-
Information systems and internal control: evidence from China
Deng, Chun-mei, (2017)
-
A novel spatial mixed frequency forecasting model with application to Chinese regional GDP
Wang, Xianning, (2019)
- More ...