Acceptance Sampling Based on the Inverse Rayleigh Distribution
The well known inverse Rayleigh distribution is considered as a model for a life time random variable. The problem of acceptance sampling when the life test is truncated at a pre-assigned time is discussed. For various acceptance numbers, various confidence levels and various values of the ratio of the fixed experimental time to the specified mean life, the minimum sample size necessary to assure a specified mean life time is worked out. The operating characteristic functions of the sampling plans are obtained. Producer's risk is also discussed. A table for the ratio of the true mean life to a specified mean life that ensures acceptance with a pre-assigned probability is provided. The results are illustrated by an example.
Year of publication: |
2005
|
---|---|
Authors: | Rosaiah K. ; Kantam R. R. L. |
Published in: |
Economic Quality Control. - De Gruyter. - Vol. 20.2005, 2, p. 277-286
|
Publisher: |
De Gruyter |
Saved in:
Saved in favorites
Similar items by person
-
Reliability Test Plans for Exponentiated Log-Logistic Distribution
Rosaiah K., (2006)
-
Rosaiah K., (2017)
-
K., Rosaiah, (2017)
- More ...