Adaptive stochastic variance reduction for subsampled Newton method with cubic regularization
Year of publication: |
2022
|
---|---|
Authors: | Zhang, Junyu ; Xiao, Lin ; Zhang, Shuzhong |
Published in: |
INFORMS journal on optimization. - Catonsville, Md. : INFORMS, ISSN 2575-1492, ZDB-ID 2957493-6. - Vol. 4.2022, 1, p. 45-64
|
Subject: | cubic-regularized Newton method | stochastic variance reduction | sample complexity | Stochastischer Prozess | Stochastic process | Stichprobenerhebung | Sampling | Schätztheorie | Estimation theory | Monte-Carlo-Simulation | Monte Carlo simulation | Varianzanalyse | Analysis of variance |
-
Valuation of options on discretely sampled variance : a general analytic approximation
Drimus, Gabriel, (2016)
-
Efficient asymptotic variance reduction when estimating volatility in high frequency data
Clinet, Simon, (2018)
-
An improved averaged two-replication procedure with Latin hypercube sampling
Bayraksan, Güzin, (2018)
- More ...
-
Bias optimality for multichain continuous-time Markov decision processes
Guo, Xianping, (2009)
-
Bias optimality for multichain continuous-time Markov decision processes
Guo, Xianping, (2009)
-
Risk-neutral moments and return predictability : international evidence
Zhang, Junyu, (2023)
- More ...