Adjustable robust optimization approach for SVM under uncertainty
Year of publication: |
2025
|
---|---|
Authors: | Hooshmand, F. ; Seilsepour, F. ; MirHassani, S. A. |
Published in: |
Omega : the international journal of management science. - Oxford [u.a.] : Elsevier, ISSN 1873-5274, ZDB-ID 1491111-5. - Vol. 131.2025, Art.-No. 103206, p. 1-16
|
Subject: | Adjustable robust optimization | Decomposition-based algorithms | Support vector machine | Three-level optimization | Uncertainty in feature vector | Valid inequalities | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Robustes Verfahren | Robust statistics | Mustererkennung | Pattern recognition | Entscheidung unter Unsicherheit | Decision under uncertainty | Algorithmus | Algorithm | Risiko | Risk |
-
Robust and distributionally robust optimization models for linear support vector machine
Faccini, Daniel, (2022)
-
Profit-based churn prediction based on Minimax Probability Machines
Maldonado, Sebastián, (2020)
-
A distributionally robust chance-constrained kernel-free quadratic surface support vector machine
Lin, Fengming, (2024)
- More ...
-
A heuristic method to find a quick feasible solution based on the ratio programming
Yarahmadi, M. N., (2023)
-
Efficient Benders decomposition for distance-based critical node detection problem
Hooshmand, F., (2020)
-
MirHassani, S. A., (2020)
- More ...