Algorithmic Decision Making with Python Resources : From Multicriteria Performance Records to Decision Algorithms via Bipolar-Valued Outranking Digraphs
by Raymond Bisdorff
Part I: Introduction to the DIGRAPH3 Python Resources -- 1. Working with the DIGRAPH3 Python Resources -- 2. Working with Bipolar-Valued Digraphs -- 3. Working with Outranking Digraphs -- Part II: Evaluation Models and Decision Algorithms -- 4. Building a Best Choice Recommendation -- 5. How to Create a New Multiple-Criteria Performance Tableau -- 6. Generating Random Performance Tableaux -- 7. Who Wins the Election? -- 8. Ranking with Multiple Incommensurable Criteria -- 9. Rating by Sorting into Relative Performance Quantiles -- 10. Rating-by-Ranking with Learned Performance Quantile Norms -- 11. HPC Ranking of Big Performance Tableaux -- Part III: Evaluation and Decision Case Studies -- 12. Alice’s Best Choice: A Selection Case Study -- 13. The Best Academic Computer Science Depts: A Ranking Case Study -- 14. The Best Students, Where Do They Study? A Rating Case Study -- 15. Exercises -- Part IV: Advanced Topics -- 16. On Measuring the Fitness of a Multiple-Criteria Ranking -- 17. On Computing Digraph Kernels -- 18. On Confident Outrankings with Uncertain Criteria Significance Weights -- 19. Robustness Analysis of Outranking Digraphs -- 20. Tempering Plurality Tyranny Effects in Social Choice -- Part V: Working with Undirected Graphs -- 21. Bipolar-Valued Undirected Graphs -- 22. On Tree Graphs and Graph Forests -- 23. About Split, Comparability, Interval, and Permutation Graphs.