Alternative Methodology for Turning-Point Detection in Business Cycle : A Wavelet Approach
We provide a signal modality analysis to characterize and detect nonlinearity schemes in the US Industrial Production Index time series. The analysis is achieved by using the recently proposed 'delay vector variance ' (DVV) method, which examines local predictability of a signal in the phase space to detect the presence of determinism and nonlinearity in a time series. Optimal embedding parameters used in the DVV analysis are obtained via a differential entropy based method using wavelet-based surrogates. A complex Morlet wavelet is employed to detect and characterize the US business cycle. A comprehensive analysis of the feasibility of this approach is provided. Our results coincide with the business cycles peaks and troughs dates published by the National Bureau of Economic Research (NBER).