An acceleration scheme for cyclic subgradient projections method
An algorithm for solving convex feasibility problem for a finite family of convex sets is considered. The acceleration scheme of De Pierro (em Methodos de projeção para a resolução de sistemas gerais de equações algébricas lineares. Thesis (tese de Doutoramento), Instituto de Matemática da UFRJ, Cidade Universitária, Rio de Janeiro, Brasil, <CitationRef CitationID="CR10">1981</CitationRef>), which is designed for simultaneous algorithms, is used in the algorithm to speed up the fully sequential cyclic subgradient projections method. A convergence proof is presented. The advantage of using this strategy is demonstrated with some examples. Copyright Springer Science+Business Media, LLC 2013
Year of publication: |
2013
|
---|---|
Authors: | Nikazad, Touraj ; Abbasi, Mokhtar |
Published in: |
Computational Optimization and Applications. - Springer. - Vol. 54.2013, 1, p. 77-91
|
Publisher: |
Springer |
Subject: | Iterative methods | Convex feasibility problem | Cyclic subgradient projections method |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
An efficient simultaneous method for the constrained multiple-sets split feasibility problem
Zhang, Wenxing, (2012)
-
A numerical algorithm for finding solutions of a generalized Nash equilibrium problem
Matioli, Luiz, (2012)
-
Market Equilibrium in Exchange Economies with Some Families of Concave Utility Functions
Codenotti, Bruno, (2005)
- More ...