An algorithmic framework for the optimization of computationally expensive bi-fidelity black-box problems
Year of publication: |
2020
|
---|---|
Authors: | Müller, Juliane |
Published in: |
INFOR : information systems and operational research. - Abingdon : Taylor & Francis Group, ISSN 1916-0615, ZDB-ID 1468358-1. - Vol. 58.2020, 2, p. 264-289
|
Subject: | black-box optimization | Global optimization | multi-fidelity optimization | surrogate models | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Algorithmus | Algorithm |
-
Surrogate optimization of computationally expensive black-box problems with hidden constraints
Müller, Juliane, (2019)
-
SOCEMO : surrogate optimization of computationally expensive multiobjective problems
Müller, Juliane, (2017)
-
Ghasemi, Mojtaba, (2022)
- More ...
-
22. Spring Meeting of Young Economists in Halle (Saale) - ein Tagungsbericht
Drygalla, Andrej, (2017)
-
Müller, Juliane, (2014)
-
Müller, Juliane, (2014)
- More ...