An alternative statistical framework for credit default prediction
Year of publication: |
2020
|
---|---|
Authors: | Uddin, Mohammad S. ; Chi, Guotai ; Habib, Tabassum ; Zhou, Ying |
Published in: |
The journal of risk model validation. - London : Infopro Digital, ISSN 1753-9579, ZDB-ID 2316764-6. - Vol. 14.2020, 2, p. 65-101
|
Subject: | credit default risk prediction model | gradient-boosting model | statistical methods | artificial intelligence (AI) | high-dimensional data | Kreditrisiko | Credit risk | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Statistische Methode | Statistical method | Kreditwürdigkeit | Credit rating | Statistische Methodenlehre | Statistical theory | Insolvenz | Insolvency | Kreditderivat | Credit derivative | Theorie | Theory |
-
Aranha, Meera, (2023)
-
A deep learning approach to estimate forward default intensities
Divernois, Marc-Aurèle, (2020)
-
Coenen, Lize, (2022)
- More ...
-
Feature selection in credit risk modeling : an international evidence
Zhou, Ying, (2021)
-
A hybrid model for credit risk assessment : empirical validation by real-world credit data
Chi, Guotai, (2020)
-
Modeling credit risk with a multi-stage hybrid model : an alternative statistical approach
Uddin, Mohammad S., (2022)
- More ...