Machine learning methods for short-term probability of default : a comparison of classification, regression and ranking methods
Year of publication: |
2022
|
---|---|
Authors: | Coenen, Lize ; Verbeke, Wouter ; Guns, Tias |
Published in: |
Journal of the Operational Research Society. - London : Taylor and Francis, ISSN 1476-9360, ZDB-ID 2007775-0. - Vol. 73.2022, 1, p. 191-206
|
Subject: | credit risk | learning-to-rank | Machine learning | probability of default | spot factoring | Künstliche Intelligenz | Artificial intelligence | Kreditrisiko | Credit risk | Prognoseverfahren | Forecasting model | Kreditwürdigkeit | Credit rating | Insolvenz | Insolvency | Regressionsanalyse | Regression analysis | Wahrscheinlichkeitsrechnung | Probability theory | Theorie | Theory | Ranking-Verfahren | Ranking method |
-
Liu, Yi, (2022)
-
Bayesian regularized artificial neural networks for the estimation of the probability of default
Sariev, Eduard, (2020)
-
Alonso, Andrés, (2021)
- More ...
-
Cost-sensitive learning for profit-driven credit scoring
Petrides, George, (2022)
-
Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains
Belle, Jente van, (2021)
-
Profit-driven business analytics : a practitioner's guide to transforming big data into added value
Verbeke, Wouter, (2018)
- More ...