An Autoencoder-Enhanced Stacking Neural Network Model for Increasing the Performance of Intrusion Detection
Year of publication: |
2022
|
---|---|
Authors: | Brunner, Csaba ; Kő, Andrea ; Fodor, Szabina |
Subject: | Knowledge economy | innovation | Automatizálás | gépesítés | Computer science |
Type of publication: | Article |
---|---|
Language: | English |
Notes: | Brunner, Csaba, Kő, Andrea and Fodor, Szabina (2022) An Autoencoder-Enhanced Stacking Neural Network Model for Increasing the Performance of Intrusion Detection. Journal of Artificial Intelligence and Soft Computing Research, 12 (2). pp. 149-163. DOI https://doi.org/10.2478/jaiscr-2022-0010 |
Other identifiers: | 10.2478/jaiscr-2022-0010 [DOI] |
Source: | BASE |
-
A New Method of Improving the Azimuth in Mountainous Terrain by Skyline Matching
Nagy, Balázs, (2020)
-
The new customisable electronic administration user interface in Hungary
Orbán, Anna, (2019)
-
Jakab, László, (2020)
- More ...
-
Intrusion detection by machine learning = Behatolás detektálás gépi tanulás által
Brunner, Csaba, (2020)
-
Feladatgyűjtemény az Internet alkalmazásfejlesztés tantárgy elsajátításához
Fodor, Szabina, (2020)
-
Competence-Oriented, Data-Driven Approach for Sustainable Development in University-Level Education
Fodor, Szabina, (2021)
- More ...