An efficient sequential learning algorithm in regime-switching environments
| Year of publication: |
2019
|
|---|---|
| Authors: | Kim, Jaeho ; Lee, Sunhyung |
| Published in: |
Studies in nonlinear dynamics and econometrics : SNDE ; quarterly publ. electronically on the internet. - Berlin : De Gruyter, ISSN 1558-3708, ZDB-ID 1385261-9. - Vol. 23.2019, 3, p. 1-14
|
| Subject: | parameter learning | particle filters | regime switching models | sequential Monte Carlo estimation | volatility models | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Volatilität | Volatility | Lernprozess | Learning process | Algorithmus | Algorithm | Schätzung | Estimation | Schätztheorie | Estimation theory | Stochastischer Prozess | Stochastic process |
-
Witzany, Jiří, (2019)
-
Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility
Leon-Gonzalez, Roberto, (2015)
-
Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility
León-González, Roberto, (2018)
- More ...
-
An Efficient Sequential Learning Algorithm in Regime-Switching Environments
Kim, Jaeho, (2018)
-
Bayesian estimation of the long-run trend of the US economy
Kim, Jaeho, (2022)
-
Ghosh, Pallab, (2016)
- More ...