An empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signals
Year of publication: |
2024
|
---|---|
Authors: | Nayak, Abhay B. ; Shah, Aastha ; Maheshwari, Shishir ; Anand, Vijay ; Chakraborty, Subrata ; Kumar, T. Sunil |
Subject: | Principal component analysis | Electroencephalogram (EEG) | Empirical wavelet transform (EWT) | Intrinsic mode function (IMF) | Motion artifact | Noise removal | Zustandsraummodell | State space model | Theorie | Theory | Hauptkomponentenanalyse |
-
Nowcasting Mexico's quarterly GDP using factor models and bridge equations
Gálvez-Soriano, Oscar de J., (2020)
-
Nowcasting sales growth of manufacturing companies in India
Sanyal, Anirban, (2018)
-
Ammouri, Bilel, (2019)
- More ...
-
Solar Powered Self-Cleaning Toilet
Shah, Aastha, (2020)
-
Modeling bivariate dependency in insurance data via Copula: A brief study
Ghosh, Indranil, (2022)
-
Broadening the focus of evaluation: An experiment
Chakraborty, Subrata, (2010)
- More ...