An evolutionary clustering analysis of social media content and global infection rates during the COVID-19 pandemic
Year of publication: |
2021
|
---|---|
Authors: | Arpaci, Ibrahim ; Alshehabi, Shadi ; Mahariq, Ibrahim ; Topcu, Ahmet E. |
Published in: |
Journal of information & knowledge management : JIKM. - Singapore : IKMS, ISSN 0219-6492, ZDB-ID 2225563-1. - Vol. 20.2021, 3, p. 2150038-1-2150038-18
|
Subject: | COVID-19 | evolutionary clustering | social media | Twitter | Social Web | Social web | Coronavirus | Clusteranalyse | Cluster analysis | Epidemie | Epidemic | Evolutionsökonomik | Evolutionary economics |
-
Tweeting on COVID-19 pandemic in South Africa : LDA-based topic modelling approach
Mutanga, Murimo Bethel, (2022)
-
COVID-19 pandemic and the economy : sentiment analysis on Twitter data
Fano, Shira, (2022)
-
Shokoohyar, Sina, (2021)
- More ...
-
Reviewing floating photovoltaic (FPV) technology for solar energy generation
Koondhar, Mohsin Ali, (2024)
-
The influence of social interactions and subjective norms on social media postings
Arpaci, Ibrahim, (2020)
-
Arpaci, Ibrahim, (2023)
- More ...