An illumination problem: optimal apex and optimal orientation for a cone of light
Let <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\{a_i:i\in I\}$$</EquationSource> </InlineEquation> be a finite set in <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\mathbb R ^n$$</EquationSource> </InlineEquation>. The illumination problem addressed in this work is about selecting an apex <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$z$$</EquationSource> </InlineEquation> in a prescribed set <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$Z\subseteq \mathbb R ^n$$</EquationSource> </InlineEquation> and a unit vector <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$y\in \mathbb R ^n$$</EquationSource> </InlineEquation> so that the conic light beam <Equation ID="Equ55"> <EquationSource Format="TEX">$$\begin{aligned} C(z,y,s):= \{x \in \mathbb R ^n : s\,\Vert x-z\Vert - \langle y, x-z\rangle \le 0\} \end{aligned}$$</EquationSource> </Equation>captures every <InlineEquation ID="IEq6"> <EquationSource Format="TEX">$$a_i$$</EquationSource> </InlineEquation> and, at the same time, it has a sharpness coefficient <InlineEquation ID="IEq7"> <EquationSource Format="TEX">$$ s\in [0,1]$$</EquationSource> </InlineEquation> as large as possible. Copyright Springer Science+Business Media New York 2014
Year of publication: |
2014
|
---|---|
Authors: | Astorino, Annabella ; Gaudioso, Manlio ; Seeger, Alberto |
Published in: |
Journal of Global Optimization. - Springer. - Vol. 58.2014, 4, p. 729-750
|
Publisher: |
Springer |
Subject: | Illumination problem | Revolution cone | Aperture angle | Sharpness coefficient | Max–min problem |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Margin maximization in spherical separation
Astorino, Annabella, (2012)
-
Lagrangian relaxation for the directional sensor coverage problem with continuous orientation
Astorino, Annabella, (2018)
-
Ellipsoidal classification via semidefinite programming
Astorino, Annabella, (2023)
- More ...