An integrated data-driven method using deep learning for a newsvendor problem with unobservable features
Year of publication: |
2022
|
---|---|
Authors: | Pirayesh Neghab, Davood ; Khayyati, Siamak ; Karaesmen, Fikri |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 302.2022, 2 (16.10.), p. 482-496
|
Subject: | Inventory | Hidden Markov model | Deep neural network | Partially observed data | Integrated estimation and optimization | Markov-Kette | Markov chain | Neuronale Netze | Neural networks | Lagerhaltungsmodell | Inventory model | Theorie | Theory | Stochastischer Prozess | Stochastic process | Mathematische Optimierung | Mathematical programming | Künstliche Intelligenz | Artificial intelligence |
-
A hybrid deep learning method for optimal insurance strategies : algorithms and convergence analysis
Jin, Zhuo, (2021)
-
Approximate dynamic programming for stochastic linear control problems on compact state spaces
Wörner, Stefan, (2015)
-
A coordinated manufacturer-retailer model under stochastic demand and production rate
Sajadieh, Mohsen Sheikh, (2015)
- More ...
-
State-dependent stock selection in index tracking – a machine learning approach
Bradrania, Reza, (2021)
-
State-dependent asset allocation using neural networks
Bradrania, Reza, (2022)
-
Deliberate premarket underpricing : new evidence on IPO pricing using machine learning
Pirayesh Neghab, Davood, (2023)
- More ...