Analyzing firm reports for volatility prediction : a knowledge-driven text-embedding approach
| Year of publication: |
2022
|
|---|---|
| Authors: | Yang, Yi ; Zhang, Kunpeng ; Fan, Yangyang |
| Published in: |
INFORMS journal on computing : JOC ; charting new directions in operations research and computer science ; a journal of the Institute for Operations Research and the Management Sciences. - Linthicum, Md. : INFORMS, ISSN 1526-5528, ZDB-ID 2004082-9. - Vol. 34.2022, 1, p. 522-540
|
| Subject: | knowledge | L&M dictionary | machine learning | volatility prediction | word embedding | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Wissensmanagement | Knowledge management | Wissen | Knowledge |
-
Forecasting new product demand using domain knowledge and machine learning
Yamamura, Charles, (2022)
-
Implementation of deep learning models in predicting ESG index volatility
Bhandari, Hum Nath, (2024)
-
Using machine learning to predict realized variance
Carr, Peter, (2020)
- More ...
-
sDTM: a supervised Bayesian deep topic model for text analytics
Yang, Yi, (2023)
-
Unifying online and offline preference for social link prediction
Zhou, Fan, (2021)
-
sDTM : A Supervised Bayesian Deep Topic Model for Text Analytics
Yang, Yi, (2020)
- More ...