Application of machine learning in algorithmic investment strategies on global stock markets
Year of publication: |
2023
|
---|---|
Authors: | Grudniewicz, Jan ; Ślepaczuk, Robert |
Published in: |
Research in international business and finance. - Amsterdam [u.a.] : Elsevier, ISSN 0275-5319, ZDB-ID 424514-3. - Vol. 66.2023, p. 1-24
|
Subject: | Machine learning | Random forests | Algorithmic investment strategies | Developed and emerging markets | Equity stock indices | Information ratio | Neural networks | Regression trees | Support vector machine | Technical analysis | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Aktienmarkt | Stock market | Prognoseverfahren | Forecasting model | Aktienindex | Stock index | Finanzanalyse | Financial analysis | Algorithmus | Algorithm | Portfolio-Management | Portfolio selection | Mustererkennung | Pattern recognition | Schwellenländer | Emerging economies | Anlageverhalten | Behavioural finance | Theorie | Theory | Regressionsanalyse | Regression analysis |
-
Application of machine learning in quantitative investment strategies on global stock markets
Grudniewicz, Jan, (2021)
-
Mahmoodi, Armin, (2024)
-
Develop an integrated candlestick technical analysis model using meta-heuristic algorithms
Mahmoodi, Armin, (2024)
- More ...
-
Application of machine learning in quantitative investment strategies on global stock markets
Grudniewicz, Jan, (2021)
-
Investment strategies that beat the market: What can we squeeze from the market?
Ślepaczuk, Robert, (2018)
-
Sakowski, Paweł, (2016)
- More ...