Application of second generation wavelets to blind spherical deconvolution
We address the problem of spherical deconvolution in a non-parametric statistical framework, where both the signal and the operator kernel are subject to measurement errors. After a preliminary treatment of the kernel, we apply a thresholding procedure to the signal in a second generation wavelet basis. Under standard assumptions on the kernel, we study the minimax performances of the resulting algorithm in terms of Lp losses (p≥1) on Besov spaces on the sphere. We hereby extend the application of second generation spherical wavelets to the blind spherical deconvolution framework. It is important to stress that the procedure is adaptive with regard to both the target function sparsity and the kernel blurring effect. We end with the study of a concrete example, putting into evidence the improvement of our procedure on the recent blockwise SVD algorithm of Delattre et al. (2012).
Year of publication: |
2014
|
---|---|
Authors: | Vareschi, T. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 124.2014, C, p. 398-417
|
Publisher: |
Elsevier |
Subject: | Blind deconvolution | Blockwise SVD | Spherical deconvolution | Second generation wavelets | Nonparametric adaptive estimation | Linear inverse problems |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
The dictionary approach for spherical deconvolution
Ngoc, Pham, (2013)
-
Convergence Rates for III-Posed Inverse Problems with an Unknown Operator
Johannes, Jan, (2009)
-
Convergence of the EM algorithm for continuous mixing distributions
Chung, Yeojin, (2015)
- More ...