Apply deep reinforcement learning with quantum computing on the pricing of American options
Junzheng Yang
Year of publication: |
2024
|
---|---|
Authors: | Yang, Junzheng |
Published in: |
Internet finance and digital economy : advances in digital economy and data analysis technology : the 2nd International Conference on Internet Finance and Digital Economy, Kuala Lumpur, Malaysia, 19 - 21 August 2022. - New Jersey : World Scientific, ISBN 978-981-12-6749-9. - 2024, p. 675-694
|
Subject: | American options | Optimal stopping time | Exercise boundary | Reinforcement learning | Q-learning | Artificial neural network | Quantum computing | Qubit | Quantum gate | Variational quantum circuit | Optionspreistheorie | Option pricing theory | Neuronale Netze | Neural networks | Lernprozess | Learning process | Optionsgeschäft | Option trading | Suchtheorie | Search theory | Künstliche Intelligenz | Artificial intelligence | Mathematische Optimierung | Mathematical programming |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Generative Bayesian neural network model for risk-neutral pricing of American index options
Jang, Huisu, (2019)
-
Learning sequential option hedging models from market data
Nian Ke, (2021)
-
On a neural network to extract implied information from american options
Liu, Shuaiqiang, (2021)
- More ...