Approximate Bayesian forecasting
Year of publication: |
2019
|
---|---|
Authors: | Frazier, David T. ; Maneesoonthorn, Worapree ; Martin, Gael M. ; McCabe, Brendan Peter Martin |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 35.2019, 2, p. 521-539
|
Subject: | Bayesian prediction | Jump-diffusion models | Likelihood-free methods | Particle filtering | Predictive merging | Proper scoring rules | Prognoseverfahren | Forecasting model | Bayes-Statistik | Bayesian inference | Theorie | Theory | Monte-Carlo-Simulation | Monte Carlo simulation | Markov-Kette | Markov chain | Zeitreihenanalyse | Time series analysis |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: Volume 37, issue 3 (July/September 2021), Seite 1300-1301 |
Other identifiers: | 10.1016/j.ijforecast.2018.08.003 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Approximate Bayesian forecasting
Frazier, David T., (2018)
-
Forecasting observables with particle filters : any filter will do!
Leung, Patrick, (2019)
-
Gerlach, Richard, (2022)
- More ...
-
Approximate Bayesian forecasting
Frazier, David T., (2018)
-
Auxiliary likelihood-based approximate Bayesian computation in state space models
Martin, Gael M., (2016)
-
Optimal probabilistic forecasts : when do they work?
Martin, Gael M., (2020)
- More ...