Approximating grouped fixed effects estimation via fuzzy clustering regression
Year of publication: |
2022
|
---|---|
Authors: | Lewis, Daniel J. ; Melcangi, Davide ; Pilossoph, Laura ; Toner-Rodgers, Aidan |
Publisher: |
New York, NY : Federal Reserve Bank of New York |
Subject: | clustering | unobserved heterogeneity | panel data |
Series: | Staff Reports ; 1033 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 1819453669 [GVK] hdl:10419/272846 [Handle] |
Classification: | C23 - Models with Panel Data ; C63 - Computational Techniques |
Source: |
-
Approximating grouped fixed effects estimation via fuzzy clustering regression
Lewis, Daniel J., (2022)
-
Nonlinear panel data methods for dynamic heterogeneous agent models
Arellanoy, Manuel, (2016)
-
Exploiting information from singletons in panel data analysis : a GMM approach
Bruno, Randolph, (2019)
- More ...
-
Approximating Grouped Fixed Effects Estimation via Fuzzy Clustering Regression
Lewis, Daniel J., (2022)
-
Approximating grouped fixed effects estimation via fuzzy clustering regression
Lewis, Daniel J., (2022)
-
Approximating grouped fixed effects estimation via fuzzy clustering regression
Lewis, Daniel J., (2023)
- More ...