Approximating long-memory processes with low-order autoregressions : implications for modeling realized volatility
Year of publication: |
2023
|
---|---|
Authors: | Baillie, Richard ; Cho, Dooyeon ; Rho, Seunghwa |
Published in: |
Empirical economics : a quarterly journal of the Institute for Advanced Studies. - Berlin : Springer, ISSN 1435-8921, ZDB-ID 1462176-9. - Vol. 64.2023, 6, p. 2911-2937
|
Subject: | ARFIMA | HAR models | Long-memory | Realized volatility | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Theorie | Theory | ARMA-Modell | ARMA model | Prognoseverfahren | Forecasting model | ARCH-Modell | ARCH model | Stochastischer Prozess | Stochastic process |
-
Modeling and forecasting S&P 500 volatility : long memory, structural breaks and nonlinearity
Martens, Martin, (2004)
-
Generalized fractional processes with long memory and time dependent volatility revisited
Peiris, M. Shelton, (2016)
-
Modelling and forecasting monthly Brent crude oil prices : a long memory and volatility approach
AlـGounmeein, Remal Shaher, (2021)
- More ...
-
Long memory, realized volatility and HAR models
Baillie, Richard, (2019)
-
Time variation in the persistence of unemployment over the past century
Cho, Dooyeon, (2019)
-
On asymmetric volatility effects in currency markets
Cho, Dooyeon, (2022)
- More ...