Are Missing Values Important for Earnings Forecast? A Machine Learning Perspective
Year of publication: |
[2022]
|
---|---|
Authors: | Uddin, Ajim ; Tao, Xinyuan ; Chou, Chia-Ching ; Yu, Dantong |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Prognose | Forecast | Gewinnprognose | Earnings announcement |
Description of contents: | Abstract [papers.ssrn.com] |
Extent: | 1 Online-Ressource |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: Quantitative Finance, 2022 Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 25, 2021 erstellt Volltext nicht verfügbar |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting earnings and returns : a review of recent advancements
Green, Jeremiah, (2022)
-
Man vs. machine learning : the term structure of earnings expectations and conditional biases
Binsbergen, Jules H. van, (2020)
-
Are missing values important for earnings forecasts? : a machine learning perspective
Uddin, Ajim, (2022)
- More ...
-
Are missing values important for earnings forecasts? : a machine learning perspective
Uddin, Ajim, (2022)
-
Attention based dynamic graph neural network for asset pricing
Uddin, Ajim, (2023)
-
The network factor of equity pricing : a signed graph Laplacian approach
Uddin, Ajim, (2024)
- More ...