Artificial Intelligence and Credit Risk : The Use of Alternative Data and Methods in Internal Credit Rating
Year of publication: |
2022
|
---|---|
Authors: | Locatelli, Rossella ; Pepe, Giovanni ; Salis, Fabio |
Publisher: |
2022.: Cham : Springer International Publishing 2022.: Cham : Imprint: Palgrave Macmillan |
Subject: | Credit rating models | Alternative data | Models in credit rating | Artificial intelligence | Banking risk management | Credit risk management | Credit risk models | Artificial Intelligence in measuring credit risk | Kreditrisiko | Credit risk | Kreditwürdigkeit | Credit rating | Künstliche Intelligenz | Risikomanagement | Risk management | Theorie | Theory | Bankrisiko | Bank risk |
Description of contents: |
Chapter 1. Introduction -- Chapter 2. How AI Models are Built -- Chapter 3. AI Tools in Credit Risk -- Chapter 4. The Validation of AI Techniques -- Chapter 5. Possible Evolutions in AI Models.
|
Extent: | 1 Online-Ressource (XVII, 104 p. 21 illus., 15 illus. in color.) |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Language: | English |
ISBN: | 978-3-031-10236-3 ; 978-3-031-10235-6 ; 978-3-031-10237-0 |
Other identifiers: | 10.1007/978-3-031-10236-3 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
The marginal impact of predicted climate risk scenarios on portfolio credit risk stress testing
Campino, Jonas de Oliveira, (2023)
-
The risk management of commercial banks : credit-risk assessment of enterprises
Luo, Na, (2016)
-
Machine learning in banking risk management : a literature review
Leo, Martin, (2010)
- More ...
-
Artificial intelligence : new data and new models in credit risk management
Locatelli, Rossella, (2023)
-
The calibration of the IRB supervisory formula: A case study
Casellina, Simone, (2023)
-
Loss given default, a new alternative approach
D'Avanzo, Francesco, (2013)
- More ...