Artificial intelligence in energy industry : forecasting electricity consumption through cohort intelligence & adaptive neural fuzzy inference system
Year of publication: |
2023
|
---|---|
Authors: | Tutun, Salih ; Tosyali, Ali ; Sangrody, Hossein ; Khasawneh, Mohammad ; Johnson, Marina Evrim ; Albizri, Abdullah ; Harfouche, Antoine |
Published in: |
Journal of business analytics. - London : Taylor & Francis Group, ISSN 2573-2358, ZDB-ID 2907637-7. - Vol. 6.2023, 1, p. 59-76
|
Subject: | ANFIS | artificial intelligence | Cohort Intelligence | electricity demand forecasting | Energy demand forecasting | machine learning | metaheuristics | parameter optimization | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Elektrizität | Electricity | Energieprognose | Energy forecast | Energiekonsum | Energy consumption | Fuzzy-Set-Theorie | Fuzzy sets | Expertensystem | Expert system |
-
Electricity demand forecasting using fuzzy hybrid intelligence-based seasonal models
Khashei, Mehdi, (2022)
-
Heilmann, Erik, (2021)
-
Neural network middle-term probabilistic forecasting of daily power consumption
Baviera, Roberto, (2021)
- More ...
-
Johnson, Marina Evrim, (2021)
-
Tutun, Salih, (2024)
-
An open system architecture framework for interoperability
Jain, Rashmi, (2022)
- More ...