Artificial Intelligence Meets Computational Intelligence : Multi-Commodity Price Volatility Accuracy Forecast with Variants of Markov-Switching-GARCH-Type-Extreme Learning Machines Hybridization Framework
Year of publication: |
[2022]
|
---|---|
Authors: | Fianu, Emmanuel Senyo |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Volatilität | Volatility | Neuronale Netze | Neural networks | Theorie | Theory |
Extent: | 1 Online-Ressource (39 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments May 5, 2022 erstellt |
Classification: | C11 - Bayesian Analysis ; C15 - Statistical Simulation Methods; Monte Carlo Methods ; C32 - Time-Series Models ; C52 - Model Evaluation and Testing ; G01 - Financial Crises ; Q41 - Demand and Supply |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Machine learning for predicting stock return volatility
Filipović, Damir, (2021)
-
Risk Management via Contemporaneous and Temporal Dependence Structures With Applications
Fianu, Emmanuel Senyo, (2022)
-
A bibliometric analysis of machine learning econometrics in asset pricing
Zapata, Hector O., (2022)
- More ...
-
Portfolio optimisation of power futures market : evidence from France and Germany
Fianu, Emmanuel Senyo, (2018)
-
Fianu, Emmanuel Senyo, (2017)
-
Responsible investments in life insurers' optimal portfolios under solvency constraints
Schlütter, Sebastian, (2022)
- More ...