Associating COVID-19 prevalence and built environment design : an explainable machine learning approach
Year of publication: |
2025
|
---|---|
Authors: | Qiao, Qingyao ; Ren, Chongyang ; Chen, Shuning ; Tundokova, Reka ; Lai, Ka Yan ; Sarkar, Chinmoy ; Zhou, Yulun ; Webster, Chris ; Schuldenfrei, Eric |
Published in: |
Journal of urban management. - Amsterdam [u.a.] : Elsevier, ISSN 2589-0360, ZDB-ID 2837330-3. - Vol. 14.2025, 2, p. 342-361
|
Subject: | Architectural design | Built environment | COVID-19 prevalence | Densely city | Explainable machine learning | Künstliche Intelligenz | Artificial intelligence | Coronavirus |
-
Chen, Ning, (2025)
-
Statistical and machine learning for credit and market risk management
Nagl, Maximilian, (2022)
-
Liu, Jiaming, (2023)
- More ...
-
Informality, property rights, and poverty in China's "favelas"
Webster, Chris, (2016)
-
Roy, Tapan Kumar, (2011)
-
Davis Weaver, Nicole, (2025)
- More ...