Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators
Year of publication: |
2024
|
---|---|
Authors: | Lin, Liu ; Mukherjee, Rajarshi ; Robins, James M. |
Subject: | Causal inference | Doubly robust functionals | Econometrics | Higher-order -statistics | Higher-order influence functions | Machine learning | Künstliche Intelligenz | Artificial intelligence | Schätztheorie | Estimation theory | Kausalanalyse | Causality analysis | Ökonometrie | Induktive Statistik | Statistical inference | Robustes Verfahren | Robust statistics | Statistischer Test | Statistical test | Schätzung | Estimation |
-
Doubly robust difference-in-differences estimators
Sant'Anna, Pedro H. C., (2020)
-
Sun, Baoluo, (2022)
-
Statistical modeling and inference in the era of Data Science and Graphical Causal modeling
Spanos, Aris, (2022)
- More ...
-
Semiparametric efficient empirical higher order influence function estimators
Mukherjee, Rajarshi, (2017)
-
Semiparametric efficient empirical higher order influence function estimators
Mukherjee, Rajarshi, (2017)
-
Cross-fitting and fast remainder rates for semiparametric estimation
Newey, Whitney K., (2017)
- More ...