Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators
Year of publication: |
2024
|
---|---|
Authors: | Lin, Liu ; Mukherjee, Rajarshi ; Robins, James M. |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ZDB-ID 1460617-3. - Vol. 240.2024, 2, Art.-No. 105500, p. 1-21
|
Subject: | Causal inference | Doubly robust functionals | Econometrics | Higher-order -statistics | Higher-order influence functions | Machine learning | Künstliche Intelligenz | Artificial intelligence | Schätztheorie | Estimation theory | Kausalanalyse | Causality analysis | Ökonometrie | Induktive Statistik | Statistical inference | Robustes Verfahren | Robust statistics | Statistischer Test | Statistical test | Schätzung | Estimation |
-
Doubly robust difference-in-differences estimators
Sant'Anna, Pedro H. C., (2020)
-
Sun, Baoluo, (2022)
-
Statistical modeling and inference in the era of Data Science and Graphical Causal modeling
Spanos, Aris, (2022)
- More ...
-
Sharing luxury consumption on social media platforms : motive inferences and downstream consequences
Wang, Yan, (2024)
-
The direction of causality between financial development and economic growth
Calderón, César A., (2003)
-
The direction of causality between financial development and economic growth
Calderón, César A., (2002)
- More ...