Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes
Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in detail.
Year of publication: |
2014
|
---|---|
Authors: | Bachoc, François |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 125.2014, C, p. 1-35
|
Publisher: |
Elsevier |
Subject: | Uncertainty quantification | Metamodel | Kriging | Covariance parameter estimation | Maximum likelihood | Leave-one-out | Increasing-domain asymptotics |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Bachoc, François, (2013)
-
A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm
Baquela, Enrique Gabriel, (2019)
-
Kriging Metamodeling in Simulation : A Review
Kleijnen, Jack P.C., (2007)
- More ...
Similar items by person