Asymptotic consistency for nonconvex risk-averse stochastic optimization with infinite-dimensional decision spaces
Year of publication: |
2024
|
---|---|
Authors: | Milz, Johannes ; Surowiec, Thomas M. |
Published in: |
Mathematics of operations research. - Hanover, Md. : INFORMS, ISSN 1526-5471, ZDB-ID 2004273-5. - Vol. 49.2024, 3, p. 1403-1418
|
Subject: | stochastic programming | uncertainty quantification | sample average approximation | asymptotic consistency | empirical approximation | Monte Carlo sampling | PDE-constrained optimization | risk-averse optimization | Stichprobenerhebung | Sampling | Mathematische Optimierung | Mathematical programming | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation | Schätztheorie | Estimation theory | Risikoaversion | Risk aversion | Risiko | Risk | Entscheidung unter Unsicherheit | Decision under uncertainty |
-
On variance reduction of mean-CVaR Monte Carlo estimators
Kozmík, Václav, (2015)
-
Epi-regularization of risk measures
Kouri, Drew P., (2020)
-
A sample average approximation method for disassemblx line balancing problem under uncertainty
Bentaha, Mohand Lounes, (2014)
- More ...
-
Henrion, René, (2009)
-
Sample average approximations of strongly convex stochastic programs in Hilbert spaces
Milz, Johannes, (2022)
-
Epi-regularization of risk measures
Kouri, Drew P., (2020)
- More ...