Asymptotic equivalence in Lee's moment formulas for the implied volatility, asset price models without moment explosions, and Piterbarg's conjecture
Year of publication: |
2012
|
---|---|
Authors: | Gulisashvili, Archil |
Published in: |
International journal of theoretical and applied finance. - River Edge, NJ [u.a.] : World Scientific, ISSN 0219-0249, ZDB-ID 1428982-9. - Vol. 15.2012, 3, p. 1-34
|
Subject: | Call and put pricing functions | implied volatility | sharp asymptotic formulas | Lee's moment formulas | Piterbarg's conjecture | Volatilität | Volatility | CAPM | Optionspreistheorie | Option pricing theory | Black-Scholes-Modell | Black-Scholes model | Stochastischer Prozess | Stochastic process | Optionsgeschäft | Option trading |
-
A local volatility correction to mean-reverting stochastic volatility model for pricing derivatives
Kim, Donghyun, (2024)
-
The implied volatility of forward starting options : ATM short-time level, skew and curvature
Alòs, Elisa, (2017)
-
The implied volatility of forward starting options : ATM short-time level, skew and curvature
Alòs, Elisa, (2017)
- More ...
-
Mass at zero and small-strike implied volatility expansion in the SABR model
Gulisashvili, Archil, (2015)
-
Extreme-Strike Asymptotics for General Gaussian Stochastic Volatility Models
Gulisashvili, Archil, (2015)
-
Implied volatility of basket options at extreme strikes
Gulisashvili, Archil, (2014)
- More ...