Auditor response to estimated misstatement risk : a machine learning approach
Year of publication: |
2022
|
---|---|
Authors: | Hunt, Emily ; Hunt, Joshua ; Richardson, Vernon J. ; Rosser, David |
Published in: |
Accounting horizons : a quarterly publication of the American Accounting Association. - Sarasota, Fla. : American Accounting Association, ISSN 0888-7993, ZDB-ID 638756-1. - Vol. 36.2022, 1, p. 111-130
|
Subject: | audit quality | machine learning | misstatement risk | risk assessment | audit fees | auditor changes | Künstliche Intelligenz | Artificial intelligence | Wirtschaftsprüfung | Financial audit | Risikomanagement | Risk management | Risiko | Risk | Dienstleistungsqualität | Service quality | Internes Kontrollsystem | Internal control | Honorar | Fee (Remuneration) |
-
On controlling for misstatement risk
Moon, James R., (2022)
-
Qi, Yue, (2023)
-
Client conservatism and auditor-client contracting
DeFond, Mark L., (2016)
- More ...
-
Investor disagreement, disclosure processing costs, and trading volume evidence from social media
Booker, Adam, (2023)
-
Lim, Jee Hae, (2023)
-
Accounting information systems
Richardson, Vernon J., (2024)
- More ...