Augmented Self-Concordant Barriers and Nonlinear Optimization Problems with Finite Complexity.
In this paper we study special barrier functions for the convex cones, which are the sum of a self-concordant barrier for the cone and a positive-semidefinite quadratric form. We show that the central path of these augmented barrier functions can be traced with linear speed. We also study the complexity of finding the analytic center of the augmented barrier.