Autoencoder-based three-factor model for the yield curve of Japanese government bonds and a trading strategy
Year of publication: |
2020
|
---|---|
Authors: | Suimon, Yoshiyuki ; Sakaji, Hiroki ; Izumi, Kiyoshi ; Matsushima, Hiroyasu |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 13.2020, 4/82, p. 1-21
|
Subject: | autoencoder | interpretability | machine learning | term structure of interest rates | yield curve | Zinsstruktur | Yield curve | Japan | Öffentliche Anleihe | Public bond | Anleihe | Bond | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm13040082 [DOI] hdl:10419/239169 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Machine learning treasury yields
Kakushadze, Zura, (2020)
-
Treasury Bond Price and Yield Curve Prediction via No Arbitrage Arguments and Machine Learning
Zhang, Weiping, (2022)
-
Bond return predictability : macro factors and machine learning methods
Jiang, Ying, (2024)
- More ...
-
Suimon, Yoshiyuki, (2020)
-
Deep reinforcement learning in agent based financial market simulation
Maeda, Iwao, (2020)
-
Impact analysis of financial regulation on multi-asset markets using artificial market simulations
Hirano, Masanori, (2020)
- More ...