Automated machine learning methodology for optimizing production processes in small and medium-sized enterprises
Year of publication: |
2024
|
---|---|
Authors: | Cruz, Yarens J. ; Villalonga, Alberto ; Castaño, Fernando ; Rivas, Marcelino ; Haber, Rodolfo E. |
Published in: |
Operations research perspectives. - Amsterdam [u.a.] : Elsevier, ISSN 2214-7160, ZDB-ID 2821932-6. - Vol. 12.2024, Art.-No. 100308, p. 1-10
|
Subject: | Automated machine learning | Automl | Hyperparameter optimization | Model selection | Multi-objective optimization | R-NSGA-II | Künstliche Intelligenz | Artificial intelligence | KMU | SME | Automatisierung | Automation | Mathematische Optimierung | Mathematical programming |
-
Seeber, Marco, (2022)
-
Makino, Hiroya, (2023)
-
Efficient and sparse neural networks by pruning weights in a multiobjective learning approach
Reiners, Malena, (2022)
- More ...
-
Hybrid Modelling and Optimization of the Oblique Cutting of AISI 1045 Steel
Perdomo, Iván La Fé, (2018)
-
Towards ‘Lean Industry 4.0ʹ – Current trends and future perspectives
Ejsmont, Krzysztof, (2020)
-
Towards "Lean Industry 4.0" : current trends and future perspectives
Ejsmont, Krzysztof, (2020)
- More ...