Automatic bandwidth selection for circular density estimation
Given angular data [theta]1,...,[theta]n[set membership, variant][0,2[pi]) a common objective is to estimate the density. In case that a kernel estimator is used, bandwidth selection is crucial to the performance. A "plug-in rule" for the bandwidth, which is based on the concentration of a reference density, namely, the von Mises distribution is obtained. It is seen that this is equivalent to the usual Euclidean plug-in rule in the case where the concentration becomes large. In case that the concentration parameter is unknown, alternative methods are explored which are intended to be robust to departures from the reference density. Simulations indicate that "wrapped estimators" can perform well in this context. The methods are applied to a real bivariate dataset concerning protein structure.
Year of publication: |
2008
|
---|---|
Authors: | Taylor, Charles C. |
Published in: |
Computational Statistics & Data Analysis. - Elsevier, ISSN 0167-9473. - Vol. 52.2008, 7, p. 3493-3500
|
Publisher: |
Elsevier |
Saved in:
Saved in favorites
Similar items by person
-
Nonparametric Regression for Spherical Data
Marzio, Marco Di, (2014)
-
Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data
Mardia, Kanti V., (2007)
-
The K-Function for Nearly Regular Point Processes
Taylor, Charles C., (2001)
- More ...