Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model
We develop a new Markov Chain Monte Carlo procedure for a time series regression model truncated by upper and lower bounds. The regression error term is assumed to follow an ARMA--GARCH process. We use a convergence diagnostics with a simultaneous test of mean and covariance stationarity and discuss model selection criteria. Using MCMC procedure we test the purchasing power parity theory for the Japanese yen controlled to fluctuate in a narrow band and find that the theory is supported if double truncation is incorporated in estimation.