Bayesian Artificial Neural Networks for frontier efficiency analysis
Year of publication: |
2023
|
---|---|
Authors: | Tsionas, Efthymios G. ; Parmeter, Christopher F. ; Zelenyuk, Valentin |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 236.2023, 2, p. 1-14
|
Subject: | Machine learning | Simulation | Flexible functional forms | Bayesian Artificial Neural Networks | Banking | Efficiency analysis | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Technische Effizienz | Technical efficiency | Bayes-Statistik | Bayesian inference | Data-Envelopment-Analyse | Data envelopment analysis | Theorie | Theory | Nichtparametrisches Verfahren | Nonparametric statistics | Bank | Effizienz | Efficiency |
-
Bayesian artificial neural networks for frontier efficiency analysis
Tsionas, Efthymios G., (2023)
-
Bridging the divide? : Bayesian artificial neural networks for frontier efficiency analysis
Tsionas, Efthymios G., (2021)
-
Cluster-adjusted DEA efficiency in the presence of heterogeneity : an application to banking sector
Sakouvogui, Kekoura, (2020)
- More ...
-
Bayesian artificial neural networks for frontier efficiency analysis
Tsionas, Efthymios G., (2023)
-
Is newer always better? : a reinvestigation of productivity dynamics using updated PWT data
Yan, Meng, (2023)
-
Combining the virtues of stochastic frontier and data envelopment analysis
Parmeter, Christopher F., (2019)
- More ...