Bayesian estimation of hidden Markov chains: a stochastic implementation
Hidden Markov models lead to intricate computational problems when considered directly. In this paper, we propose an approximation method based on Gibbs sampling which allows an effective derivation of Bayes estimators for these models.
Year of publication: |
1993
|
---|---|
Authors: | Robert, Christian P. ; Celeux, Gilles ; Diebolt, Jean |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 16.1993, 1, p. 77-83
|
Publisher: |
Elsevier |
Keywords: | Gibbs sampling forward-backward recursion formula ergodicity stochastic restoration geometric convergence |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Sélection bayésienne de variables en régression linéaire
Celeux, Gilles, (2006)
-
Theory and Methods - Computational and Inferential Difficulties With Mixture Posterior Distributions
Celeux, Gilles, (2000)
-
Iterated importance sampling in missing data problems
Celeux, Gilles, (2006)
- More ...