Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling
An efficient and accurate approach is proposed for forecasting the Value at Risk (VaR) and Expected Shortfall (ES) measures in a Bayesian framework. This consists of a new adaptive importance sampling method for the Quick Evaluation of Risk using Mixture of t approximations (QERMit). As a first step, the optimal importance density is approximated, after which multi-step 'high loss' scenarios are efficiently generated. Numerical standard errors are compared in simple illustrations and in an empirical GARCH model with Student-t errors for daily S&P 500 returns. The results indicate that the proposed QERMit approach outperforms alternative approaches, in the sense that it produces more accurate VaR and ES estimates given the same amount of computing time, or, equivalently, that it requires less computing time for the same numerical accuracy.
Year of publication: |
2010
|
---|---|
Authors: | Hoogerheide, Lennart ; Dijk, Herman K. van |
Published in: |
International Journal of Forecasting. - Elsevier, ISSN 0169-2070. - Vol. 26.2010, 2, p. 231-247
|
Publisher: |
Elsevier |
Keywords: | Value at Risk Expected Shortfall Numerical standard error Importance sampling Mixture of Student-t distributions Variance reduction technique |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Possibly Ill-behaved Posteriors in Econometric Models
Hoogerheide, Lennart, (2008)
-
Bayesian Forecasting of Value at Risk and Expected Shortfall using Adaptive Importance Sampling
Hoogerheide, Lennart, (2008)
-
Forecast Accuracy and Economic Gains from Bayesian Model Averaging using Time Varying Weights
Hoogerheide, Lennart, (2009)
- More ...