Bayesian inference for long memory stochastic volatility models
Year of publication: |
2024
|
---|---|
Authors: | Chaim, Pedro ; Laurini, Márcio Poletti |
Published in: |
Econometrics : open access journal. - Basel : MDPI, ISSN 2225-1146, ZDB-ID 2717594-7. - Vol. 12.2024, 4, Art.-No. 35, p. 1-28
|
Subject: | long memory | Gaussian Markov random fields | Laplace approximations | volatility forecasting | Volatilität | Volatility | Theorie | Theory | ARCH-Modell | ARCH model | Stochastischer Prozess | Stochastic process | Markov-Kette | Markov chain | Bayes-Statistik | Bayesian inference | Zeitreihenanalyse | Time series analysis |
-
Flexible modeling of dependence in volatility processes
Kalli, Maria, (2015)
-
High-frequency realized stochastic volatility model
Watanabe, Toshiaki, (2024)
-
Lai, Yi-Hao, (2024)
- More ...
-
Nonlinear dependence in cryptocurrency markets
Chaim, Pedro, (2019)
-
Volatility and return jumps in bitcoin
Chaim, Pedro, (2018)
-
Arbitrage in the Term Structure of Interest Rates: a Bayesian Approach
Laurini, Márcio Poletti, (2014)
- More ...