Bayesian nonparametric regression models for modeling and predicting healthcare claims
Year of publication: |
November 2018
|
---|---|
Authors: | Richardson, Robert ; Hartman, Brian |
Published in: |
Insurance / Mathematics & economics. - Amsterdam : Elsevier, ISSN 0167-6687, ZDB-ID 8864-X. - Vol. 83.2018, p. 1-8
|
Subject: | Dependent Dirichlet process | Episode treatment group | Markov chain Monte Carlo | Model comparison | Linear models | Theorie | Theory | Markov-Kette | Markov chain | Monte-Carlo-Simulation | Monte Carlo simulation | Bayes-Statistik | Bayesian inference | Regressionsanalyse | Regression analysis | Nichtparametrisches Verfahren | Nonparametric statistics | Prognoseverfahren | Forecasting model | Gesundheitsversorgung | Health care |
-
Fast and order-invariant inference in Bayesian VARs with nonparametric shocks
Huber, Florian, (2024)
-
Time-varying sparsity in dynamic regression models
Kalli, Maria, (2014)
-
Bayesian adjustment for insurance misrepresentation in heavy-tailed loss regression
Xia, Michelle, (2018)
- More ...
-
Modeling county-level spatio-temporal mortality rates using dynamic linear models
Gibbs, Zoe, (2020)
-
Modeling county-level spatio-temporal mortality rates using dynamic linear models
Gibbs, Zoe, (2020)
-
mSHAP: SHAP Values for Two-Part Models
Matthews, Spencer, (2021)
- More ...